

FACULTY OF HEALTH, APPLIED SCIENCES AND NATURAL RESOURCES DEPARTMENT OF MATHEMATICS AND STATISTICS

QUALIFICATION: Bachelor of Science (Hons) in Applied Mathematics			
QUALIFICATION CODE:	08BSHM	LEVEL:	8
COURSE CODE:	ADC801S	COURSE NAME:	ADVANCED CALCULUS
SESSION:	JUNE 2022	PAPER:	THEORY
DURATION:	3 HOURS	MARKS:	100

FIRST OPPORTUNITY EXAMINATION QUESTION PAPER		
EXAMINER:	DR. DSI IIYAMBO	
MODERATOR:	PROF. OD MAKINDE	

INSTRUCTIONS

- 1. Attempt all the questions in the booklet provided.
- 2. Show clearly all the steps used in the calculations.
- 3. All written work must be done in black or blue inked, and sketches must be done in pencil.

PERMISSIBLE MATERIALS

1. Non-programmable calculator without a cover.

THIS QUESTION PAPER CONSISTS OF 2 PAGES (Including this front page)

Question 1.

Suppose that the equation $xe^{yz} - 2ye^{xz} + 3ze^{xy} = 1$ defines z as an implicit function of x and y. Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.

[10]

Question 2.

Find the local extreme values and the saddle points of the function $f(x,y) = 4 + x^3 + y^3 - 3xy$.

[14]

Question 3.

Use the method of Lagrange multipliers to find the minimum and maximum values of the function $f(x,y) = 2x^2 + y^2 + 2$, where x and y lie on the ellipse C given by $x^2 + 4y^2 - 4 = 0$. [15]

Question 4.

Let
$$\mathbf{F} = (e^x \ln y)\mathbf{i} + \left(\frac{e^x}{y} + \sin z\right)\mathbf{j} + (y\cos z)\mathbf{k}$$
.

- a) Determine whether F is a conservative vector field. If it is, find a potential function for F.
- b) Evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$, where C is the curve given by $\mathbf{r}(t) = 2\cos t\mathbf{i} + 2\sin t\mathbf{j} + 5\mathbf{k}$, where $0 \le t \le 2\pi$.

[19,5]

Question 5.

Let f be a differentiable function of x, y and z, and let $\mathbf{F}(x, y, z) = P(x, y, z)\mathbf{i} + Q(x, y, z)\mathbf{j} + R(x, y, z)\mathbf{k}$, where P, Q and R are differentiable functions of x, y and z. Prove that $\operatorname{div}(f\mathbf{F}) = f\operatorname{div}\mathbf{F} + \mathbf{F} \cdot \nabla \mathbf{f}$.

[10]

Question 6.

Evaluate $\int_C xy^4 dS$, where C is the upper half of the circle $x^2 + y^2 = 16$ in the counter clockwise direction.

Question 7.

Use Green's Theorem to evaluate $\oint_C y^3 dx - x^3 dy$, where C is the positively oriented circle of radius 2 centred at the origin. [10]

Question 8.

Evaluate the integral
$$\iiint_B 8xyz \, dV$$
 over the box $B = [2,3] \times [1,2] \times [0,1]$. [8]